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Abstract: The primary aim of Project M3: Mentoring Mathematical Minds was to develop and field test advanced 
units for mathematically promising elementary students based on exemplary practices in gifted and mathematics 
education. This article describes the development of the units and reports on mathematics achievement results for 
students in Grades 3 to 5 from 11 urban and suburban schools after exposure to the curriculum. Data analyses indicate 
statistically significant differences favoring each of the experimental groups over the comparison group on the ITBS 
(Iowa Tests of Basic Skills) Concepts and Estimation Test and on Open-Response Assessments at all three grade 
levels. Furthermore, the effect sizes range from 0.29 to 0.59 on the ITBS Concepts and Estimation Scale and 0.69 to 
0.97 on the Open-Response Assessments. These results indicate that these units, designed to address the needs of 
mathematically promising students, positively affected their achievement.

Putting the Research to Use: To date, there is a paucity of research-based, challenging mathematics curriculum 
units designed specifically for mathematically promising elementary students. As a result, gifted programming for 
these students, if it exists within a district, often involves a collection of assorted math puzzles and problems or an 
above-grade-level textbook that was written for the average student. The findings from this curriculum study sug-
gest to practitioners that mathematics curriculum units that are challenging and engaging with a focus on important 
math concepts and that encourage students to think and act like practicing mathematicians contribute to students' 
math achievement. The fact that this study was replicated with a second cohort strengthens the result.  In addition, 
since almost 50% of the students came from economically disadvantaged backgrounds, the study illustrates that the 
curriculum was highly effective with this special population, while meeting the needs of all talented students.

Keywords: mathematics; curriculum; elementary; mathematically promising

“The student most neglected, in terms of realiz-
ing full potential, is the gifted student of 

mathematics. Outstanding mathematical ability is a 
precious societal resource, sorely needed to main-
tain leadership in a technological world” (National 
Council of Teachers of Mathematics [NCTM], 1980, 
p. 18). Although NCTM published this quote nearly 
30 years ago, progress since then has been slow. At 
the international level, the latest Trends in International 
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Mathematics and Science Study (TIMSS, 2008) indi-
cates that whereas more than 40% of fourth and 
eighth graders in Singapore and other Asian countries 
scored at the most advanced level, only 10% of U.S. 
fourth graders and 6% of eighth graders scored at this 
level. Results from the National Assessment of 
Educational Progress (NAEP, 2008) indicate that 
although scores continue to increase, only 6% of 
fourth graders and 7% of eighth graders perform at 
the advanced level. It is at this level that eighth grad-
ers are expected to use abstract thinking, a corner-
stone of high-level mathematics. Thus, whether we 
look at international or national measures, our present 
system of mathematics education, while improving, is 
not serving the needs of our most capable students.

Prior to the inception of this curriculum develop-
ment project, there had been a dearth of challenging, 
in-depth, research-based mathematics curriculum 
available specifically for elementary students exhibit-
ing mathematical promise. Mathematical promise is a 
broadened and dynamic definition of mathematical 
talent or giftedness that recognizes and develops tra-
ditionally underserved students, such as those from 
diverse and poor backgrounds. Through a federal 
Jacob K. Javits research grant, Project M3: Mentoring 
Mathematical Minds designed advanced curriculum 
for elementary students in an attempt to fill this void. 
An aim of the project was to help mathematically 
promising students learn more complex mathematics 
and achieve at internationally competitive levels.

The Project M3 units were evaluated throughout 
the formative and summative stages of the project 
and results are presented here. Specifically, the pur-
pose of this study was to determine if there were any 
differences in mathematics achievement between the 
experimental groups learning from the Project M3 
curriculum and a like-ability comparison group. In an 
effort to situate the reader, the theoretical orientation 
and recommendations regarding curriculum design 
are offered first, followed by how these were concep-
tualized in the Project M3 units.

Theoretical Orientation

Current mathematics education reform relies on 
sociocultural theory as one framework to guide its 
initiatives (Forman, 2003). Forman explains that 
sociocultural theory recognizes a connection between 
instruction and student learning, particularly through 
communication within a social context. Referencing 
van Oers, Forman (1996) summarized the four tenets 
that exemplify sociocultural theory.

Social organizational processes are an inherent char-
acteristic of learning—whether or not it occurs in an 
overtly social context. Second, learning needs to be 
viewed as a form of apprenticeship or a means by 
which novices become experts through participation 
in activities within a community of practice. Third, 
learning mathematics is a discursive activity. Fourth, 
learning provides the negotiation of meaning with 
the context of a situated activity. (pp. 116-117)

In summary, sociocultural theory frames students’ 
learning as occurring not in isolation, but rather 
being influenced by the context in which the learn-
ing is taking place. Although students offer their 
own understandings, the teacher is in a position to 
mentor students with respect to practices within the 
discipline, in this case mathematics. In this way, the 
classroom becomes a community of practice, and 
communication both serves as a vehicle and sets the 
stage to help members of the community negotiate 
mathematical meaning.

Curriculum Design Framework

Certain curriculum recommendations from both 
the gifted and talented and mathematics education 
fields can be connected to sociocultural theory. We 
drew from this literature, research on gifted mathe-
matics curriculum, and recommendations from experts 
and major works in gifted and mathematics education 
to guide the development of the Project M3 units.

Contributions from the Gifted 
and Talented Education Field

Mathematically talented students come to know and 
understand mathematics differently than other students. 
They can use a variety of problem-solving strategies 
fluidly and flexibly and have a general “mathematical 
cast of mind” (Krutetskii, 1968/1976, p. 302). Research 
indicates that not only do they think differently, but 
their thinking actually resembles the way that profes-
sional mathematicians work (Pelletier & Shore, 2003; 
Sriraman, 2004). Hadamard and Polya (as cited in 
Sriraman, 2004), both well-respected mathematicians, 
believed the only difference between the work of a 
professional mathematician and a talented student of 
mathematics was in the degree of sophistication.

Encouraging students to think and act like practic-
ing professionals is one of the hallmarks of learning 
promoted by experts in gifted and talented education. 
This philosophy is outlined in both The Multiple 
Menu Model: A Practical Guide for Developing 
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Differentiated Curricula (Renzulli, Leppien, & 
Hays, 2000) and in the Curriculum of Practice, part 
of the Parallel Curriculum Model (Tomlinson et al., 
2002). These authors promote providing opportuni-
ties for talented students to use the skills and method-
ologies of the discipline they are studying. This focus 
on disciplinary thinking leads to a curriculum focused 
on solving problems that is in line with recommen-
dations by NCTM (1989, 2000) and by leaders in the 
field of gifted mathematics education (Sheffield, 
1994; Wheatley, 1983).

To focus on disciplinary thinking, Tomlinson et al. 
(2002) recommend using the Core Curriculum Model 
from the Parallel Curriculum. This curriculum design 
is built on key concepts, principles, and skills essen-
tial to the discipline. The result is a curriculum that is 
coherent and organized to achieve essential out-
comes. The investigations in the curriculum should 
“cause students to grapple with ideas and questions, 
using both critical and creative thinking” (p. 21).

The impact of different models of mathematics cur-
riculum for gifted students has not been fully estab-
lished given the limited curriculum that is available. 
Tieso (2003) found that using an enhanced or differ-
entiated curriculum with high-ability elementary stu-
dents resulted in significant achievement gains 
compared with using a unit from the regular mathe-
matics curriculum. Studies on different programming 
models of acceleration and enrichment are limited and 
have mixed results. For instance, Robinson, Shore, 
and Enersen (2007) found that acceleration enables 
students to cover the content efficiently. However, 
they caution that acceleration alone does not promote 
the high-level thinking that is vital and characteristic 
of mathematically promising students. Sowell’s (1993) 
review of five studies focused on enrichment and 
found mixed results. Fourth graders outperformed the 
control groups on cognitive and affective measures in 
one study, whereas in another study fifth and sixth 
graders were not significantly different from the con-
trol group. Although limited studies have been con-
ducted that focus on a combination of acceleration 
and achievement, significant achievement gains indi-
cate that combination is a promising approach (Miller 
& Mills, 1995; Moore & Wood, 1988; Robinson & 
Stanley, 1989).

Contributions From 
the Mathematics Education Field

NCTM has addressed the importance of considering 
the mathematical content students learn, how they 

learn it, and the environment in which this learning 
takes place in the design of curriculum. As Clements 
(2007) points out, the NCTM Standards “were cre-
ated by a dialectical process among many legitimate 
stakeholders and thus serve as a valuable starting 
point” (p. 40) in helping establish the educational 
goals of the mathematics curriculum. They identified 
five major content areas to be studied across all grades: 
algebra, data analysis and probability, geometry, mea-
surement, and number and operations. Recently, 
NCTM addressed the critique of the U.S. mathematics 
curriculum as being “a mile wide and an inch deep” 
(Fuson, 2004; Schmidt, Wang, & McNight, 2005) with 
the publication of the Curriculum Focal Points (2006). 
This document stresses the depth of student learning 
over the coverage of numerous content areas.

The curriculum recommendations included in the 
aforementioned publications built on a foundation 
established by NCTM’s Curriculum and Evaluation 
Standards for School Mathematics (1989). In this 
seminal publication, NCTM outlined some guiding 
curriculum principles. First, the level and depth at 
which students come to understand mathematical con-
cepts is more highly regarded than the number of skills 
they obtain. Second, affective considerations need to be 
considered in curriculum development. That is, the cur-
riculum should “build beliefs about what mathematics 
is, about what it means to know and do mathematics, 
and about children’s view of themselves as mathemat-
ics learners” (pp. 16-17). These principles should be 
manifested in curriculum that has a conceptual orienta-
tion, encourages students to be actively engaged with 
mathematics, emphasizes students’ developing reason-
ing abilities, and addresses content beyond arithmetic, 
among others (NCTM, 1989).

The 2000 NCTM Standards address not only what 
students should learn through the content standards, 
but also how they learn it via the process standards. 
Recently, Boix Mansilla, and Gardner (2008) have 
continued to promote learning the discipline and dis-
ciplinary thinking rather than simply subject matter: 
“The goal of this approach is to instill in the young 
the disposition to interpret the world in the distinctive 
ways that characterizes the thinking of experienced 
disciplinarians” (pp. 14-15). In line with gifted and 
talented recommendations (Renzulli et al., 2000; 
Tomlinson et al., 2002), the process standards present 
teachers with strategies to engage their students with 
mathematics in ways that are similar to those of prac-
ticing mathematicians engaged with the discipline 
(Sriraman, 2004). These processes include communi-
cation, connections, reasoning, representation, and 
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problem solving and are inextricably linked. For 
instance, students use reasoning as they solve prob-
lems and then communicate their reasoning using a 
variety of representations.

The mathematics education field gives consider-
able attention to the context in which students learn, 
particularly in an effort to support the execution of 
the process standards. Leaders have noted that the 
classroom environment should emphasize how stu-
dents understand and come to know the mathematics 
(Wood, 1999), support student access to discussions 
through established norms (Hiebert et al. 1997), and 
encourage and accommodate the exchange of multi-
ple perspectives by treating misconceptions as oppor-
tunities for learning (Hiebert et al., 1997; Kazemi, 
1998; Mewborn & Huberty, 1999). Students should 
take on roles, particularly during discussions, by lis-
tening and responding to others through speculation, 
investigation of conjectures, and presentation of via-
ble solutions. They also should convince themselves 
and others of the validity of their ideas and depend on 
evidence grounded in mathematics to determine the 
validity of ideas (NCTM, 1991). This is in line with 
the tenets of sociocultural theory that provided a 
framework for the curriculum. The development of 
the Project M3 units addressed the concepts addressed 
in the mathematics education literature—content, 
process, and learning environment—and the specific 
components are detailed next.

Development of the Project M3 Units

A partnership of gifted and talented educators, 
mathematicians, and mathematics educators collabo-
rated to write the 12 Project M3 units and meld the 
recommendations set forth in the gifted and talented 

and mathematics education fields. The development 
of the Project M3 units paralleled the a priori founda-
tions phases from the Curriculum Research Framework 
more recently proposed by Clements (2007). A prior 
foundations entail phases when “extant research is 
reviewed and implications for the nascent curriculum 
development effort [is] drawn” (p. 42). Table 1 sum-
marizes the actions taken in the development of the 
Project M3 curriculum units as it maps onto Clements’s 
a priori foundations. A more thorough description of 
the particular features of the units follows.

In an effort to allow for flexibility in implementa-
tion, the Project M3 units were designed as individual 
units rather than a complete curriculum. There are a 
total of 12 units, with 4 units at each of 3 levels pri-
marily designed for students in Grades 3, 4, and 5. 
Each unit addresses important mathematical ideas 
from one of the NCTM content strands, which were 
grouped accordingly: (a) algebra, (b) data analysis or 
probability, (c) geometry or measurement, and (d) 
number and operations. The content is accelerated 
one to two grade levels, and students investigate the 
mathematics in-depth. The process standards are 
embedded throughout the units in an effort to position 
students as practicing mathematicians. Although the 
units emphasize verbal and written communication 
centered on important mathematical ideas, students 
also regularly use the NCTM processes of problem 
solving, reasoning, making connections, and creating 
and using representations. The tasks demand high-
level thinking and the creation of products that 
encourage students to extend what they have learned 
in various ways, such as games and culminating 
 projects.

In line with a sociocultural perspective (Forman, 
1996; 2003), the Project M3 units also provide 

Table 1
A Priori Foundations Stages in the Development of the Project M3 Units

A Priori Foundation

1. Subject matter 
 
 
 

2. Pedagogy

Project M3 Development

The curriculum authors, all national or state-level leaders in gifted education and mathematics education, 
primarily relied on NCTM content standards as a guide. They referred to Connecticut, Kentucky, and 
Massachusetts state standards (the authors’ home states) and NSF-developed curricula to identify more 
specific objectives. Mathematicians, mathematics educators, gifted educators, mathematics specialists, 
teachers, and professional development leaders served as content reviewers prior to field testing.

The authors reviewed gifted education literature to identify and recommend best curriculum practices. 
Sociocultural theory served to merge mathematics education and gifted education recommendations.

Enrichment teaching and learning strategies from the gifted education field, in particular differentiation and a 
focus on student as practicing professional, were used to support and develop content knowledge. The 
authors also embedded the NCTM process standards particularly communicating to support students’ 
problem solving and reasoning within the curriculum.

Note: NCTM = National Council of Teachers of Mathematics, NSF = National Science Foundation.

 by David Niecikowski on January 3, 2012gcq.sagepub.comDownloaded from 

http://gcq.sagepub.com/


192   Gifted Child Quarterly, Vol. 53, No. 3

 strategies for teachers to address the culture of the 
classroom in an effort to engage students as practic-
ing mathematicians who commonly reason and justify 
their ideas. Teachers reinforce the “Classroom Rights 
and Obligations” that outline students’ expected 
behaviors. Students have the right to ask questions, 
to make a contribution to an attentive and responsive 
audience, to be treated respectfully, and to have their 
ideas discussed. Students also are obligated to speak 
loudly enough for others to hear, to listen to others 
in order to understand, and to agree or disagree with 
the speaker’s comments and explain why. The Rights 
and Obligations serve to support and are supported 
by the classroom discourse. Specifically, teachers 
are shown how to implement Chapin, O’Connor, and 
Anderson’s (2003) talk moves to facilitate discus-
sions. They learn how to revoice student contribu-
tions, have students repeat/rephrase one another’s 
ideas, encourage them to agree/disagree and explain 
why using mathematically valid evidence, have stu-
dents add on additional perspectives, and use wait 
time to encourage more contributions. In particular, 
the agree/disagree and why talk move embodies the 
design of the questions students respond to in writ-
ing. The Think Deeply questions are intended to be 
the heart and soul of each lesson as they address a 

concept tied directly to an important mathematical 
idea. Students frequently have to justify their math-
ematical position by explaining their reasoning using 
evidence. In Table 2, we provide a brief overview of 
how the curriculum unit features are connected to the 
literature recommendations in gifted and mathematics 
education.

Method

Although recommendations from the gifted and 
mathematics education fields are impingent to the 
development of new curriculum, implementing these 
into the curriculum design is not sufficient to deter-
mine their efficacy; the curriculum needs to be evalu-
ated to ensure that gains in student achievement are 
imminent (VanTassel-Baska, Zuo, Avery, & Little, 
2002). The first level of evaluation of the units 
involved a content analysis by gifted and mathemat-
ics education experts and teachers. Written feedback 
was gathered, analyzed, and used in the revision of 
the units used for the field test. Then, we examined 
the effectiveness of the Project M3 units using a 
quasi-experimental design focused on students’ math-
ematics achievement.

Unit Features

Important mathematical ideas: Students think in-depth about the 
essential concepts for a particular content area 
 
 

Differentiation: Different levels of support and challenge are 
provided, including (a) Hint Cards for students needing 
support; (b) Think Deeply Questions for most students; and 
(c) Think Beyond Cards for students needing further 
challenge

Projects and/or culminating activities: Student projects address 
the big ideas and focus on students as practicing 
mathematicians 
 
 

Verbal discourse: Talk moves (Chapin, O’Connor, & Anderson, 
2003), particularly agree/disagree and why, establish a 
community of practice to make meaning of mathematics 
 

Classroom environment: Classroom Rights and Obligations 
guide the social norms

Connection to the Literature

Conceptual orientation (NCTM, 1989); Content standards 
(NCTM, 2000); In-depth investigations (NCTM, 1989, 2006); 
Accelerated and enriched content (e.g., Robinson & Stanley, 
1989; Moore & Wood, 1988; Miller & Mills, 1995); Core 
curriculum (Tomlinson, et al. 2002)

Differentiated curriculum for different levels of talent (Tieso, 
2003; Tomlinson, 1995); Written communication as a 
mathematical process (NCTM, 2000) 
 

Thinking like a practicing mathematician (Boix Mansilla & 
Gardner, 2008; Chazan & Ball, 1995; Renzulli, Leppien, & 
Hays, 2000; Sriraman, 2004; Tomlinson et al., 2002); 
In-depth investigations (NCTM, 1989; 2006); Process 
standards (NCTM, 2000); Active engagement with 
mathematics (NCTM, 1989)

Verbal communication as a mathematical process (NCTM, 
2000); Thinking like a practicing mathematician (Boix 
Mansilla & Gardner, 2008; Chazan & Ball, 1995; Renzulli, 
Leppien, & Hays, 2000; Sriraman, 2004; Tomlinson et al., 
2002); Developing reasoning abilities (NCTM, 1989)

Classroom environment (Hiebert et al., 1997; Kazemi, 1998; 
Mewborn & Huberty, 1999; Wood, 1999)

Table 2
Connections Between the Project M3 Units and Literature Recommendations

Note: NCTM = National Council of Teachers of Mathematics.
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Selection of Schools and Teachers

The researchers and curriculum authors intended the 
Project M3 units to challenge students from all back-
grounds, including those from lower and higher socio-
economic districts. The major emphasis of the U.S. 
Department of Education Javits program is on serving 
students traditionally underrepresented in gifted and 
talented programs, particularly economically disadvan-
taged, limited English proficient, and students with 
disabilities, to help reduce the serious gap in achieve-
ment among certain groups of students at the highest 
levels of achievement. Higher socioeconomic districts 
were included to ensure that this would not be consid-
ered a compensatory curriculum. This is in agreement 
with Clements (2007), who makes note of “the impor-
tance of representative populations when the structure 
and content of curricula are being formed” (p. 47).

Schools from urban and suburban areas of 
Connecticut and Kentucky agreed to participate in the 
study for 4 years, with teachers in each grade level 
(3-5) committing to participate for 2 consecutive 
years within this time frame. In most schools, students 
left their homerooms during their regularly scheduled 
mathematics period to participate in the intervention. 
Teachers were not randomly assigned as they also had 
to commit to a 2-week professional development 
institute in the summer prior to the first implementa-
tion at their grade level. The first 10 schools that 
agreed to these conditions participated in the study. A 
total of 11 schools participated (two elementary 
schools fed into one middle school in Grade 5). Nine 
were in Connecticut and two in Kentucky; with seven 
in urban settings, and four in suburban districts.

Sample of Students

Identification. In an effort to target underrepre-
sented groups and support a diverse sample, a more 
inclusive group of students, using a broadened defini-
tion of mathematical talent, was identified to partici-
pate in the study. NCTM defines the group of students 
with high ability in mathematics as mathematically 
promising. The NCTM Task Force on Mathematically 
Promising Students identifies mathematical promise 
as “a function of ability, motivation, belief, and expe-
rience or opportunity.” They also state that students 
who possess this have a “large range of abilities and 
a continuum of needs that should be met” (Sheffield, 
1999, p. 310). The researchers used this broadened 
definition of mathematically talented students in 
selection of the research sample and in the develop-
ment of the Project M3 units.

The researchers followed a strict identification 
procedure based on exemplary practices in gifted 
education. To ensure comparability of groups, they 
identified the experimental and comparison groups in 
exactly the same way in the same schools. The 
National Research Council (Confrey, 2006) strongly 
recommends this methodology for use in curriculum 
research studies. The identification procedure included 
the use of multiple measures to identify mathematical 
promise in students (Gavin & Adelson, 2007; Sheffield, 
Bennett, Berriozabal, DeArmond, & Wertheimer, 
1999; Sowell, Bergwell, Zeigler, & Cartwright, 1990). 
The instruments used to identify students were the 
Naglieri Nonverbal Ability Test (NNAT; Harcourt 
Brace Educational Measurement, 1997; KR-20 reli-
ability = .83), the Mathematics Scales for Rating the 
Behavioral Characteristics of Superior Students 
(SRBCSS Math Scale; Cronbach α = .98; Gavin, 
2005), classroom performance, other standardized 
tests given by the district, and other pertinent informa-
tion teachers shared about students. The NNAT 
includes items on pattern completion, reasoning by 
analogy, serial reasoning, and spatial visualization. 
Because these processes were some of the compo-
nents of the Project M3 curriculum, the researchers 
felt strong performance on this test would help iden-
tify appropriate participants. In addition, this assess-
ment is appropriate for identifying students from 
diverse cultural and language backgrounds and those 
with learning differences because it uses pictures 
without any words (Harcourt Brace Educational 
Measurement, 1997). At the same time, all the grade-
level teachers completed the SRBCSS Math Scale on 
the top half of their class. This scale rated students on 
how well they exhibited characteristics of mathemat-
ically talented students such as using creative and 
unusual ways to solve math problems, displaying a 
strong number sense, and frequently solving math 
problems abstractly, without the need for concrete 
materials. Teachers also filled out a recommendation 
form that included classroom performance, standard-
ized test scores, and any other relevant information 
they wished to share about the students.

In aiming for an approximate class size of 20 stu-
dents per school, researchers used local norms to 
identify students. If there was inconsistency between 
measures, researchers contacted teachers to discuss 
the individual student. Often this inconsistency was 
the result of selecting a student who had not been 
identified by their teacher as being in the top half of 
their class yet performed at high levels (∼85th per-
centile or above) on the NNAT. More often than not, 
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teachers took a second look at the student and agreed 
that this student might have hidden potential in terms 
of reasoning ability. (See Gavin, 2005, to learn more 
about the identification measures.)

Experimental and comparison groups. There were 
two experimental groups. Students in Experimental 
Group I were selected during the first year of pro-
gram implementation (2003), and students in 
Experimental Group II were selected during the fol-
lowing year (2004). The Comparison Group was a 
sample from the same schools identified in the same 
way as the experimental groups and was selected and 
assessed the year prior to the intervention in the 
schools (2002). They did not receive the intervention. 
This helped assure no diffusion of treatment from the 
experimental groups to the comparison group.

In addition to the identical procedures used to 
identify students for the experimental and compari-
son groups, the demographic characteristics reported 
in Table 3 confirm the similar profiles of the three 
groups and their comparability to the overall school 
populations from which the cohorts were chosen. 

Unlike studies that compromise external validity with 
homogeneous samples from largely suburban schools, 
Project M³ had diversified subjects in each of the three 
groups. The profiles on gender, ethnicity/race, and 
household income as indicated by “eligible for a meal 
subsidy” reflect a broad population of students. In 
addition, these demographic statistics are comparable 
with those of the entire school population from which 
the sample was chosen. Experimental Group I and the 
Comparison Group were chosen from the same 
schools and identified in the same year (2002-2003). 
During this year, the school profiles for ethnicity/race 
were 52% Caucasian and 48% multiethnic/racial. A 
total of 52% of the students were eligible for a meal 
subsidy. In 2003-2004, Experimental Group II was 
identified. The demographic statistics for that year 
for the school population were again similar to the 
sample chosen. The school profiles showed 51% of 
the population was Caucasian, 49% was multiethnic/
racial, and 51% of the students were eligible for a 
meal subsidy.

As shown in Table 4, students in the comparison 
group had comparable scores to both experimental 

Table 3
Student Demographics for Experimental and Comparison Groups

Group n Gender (%) Ethnicity/Race (%) Eligible for Meal Subsidy (%)

Experimental Group I 193 Males (53) Caucasian (54) 46
  Females (47) Multiethnic/racial (46) 
Experimental Group II 177 Males (53) Caucasian (53) 46
  Females (47) Multiethnic/racial (47) 
Comparison Group 211 Males (55) Caucasian (51) 47
  Females (45) Multiethnic/racial (49) 
School profiles 2002-2003a   Caucasian (52) 52
   Multiethnic/racial (48) 
School profiles 2003-2004b   Caucasian (51) 51
   Multiethnic/racial (49) 

a. 2002-2003 is the school year in which Experimental Group I and Comparison Group were identified. Gender information not avail-
able from school profile.
b. 2003-2004 is the school year in which Experimental Group II was identified. Gender information not available from school profile.

Table 4
Comparison of Each Experimental Group With the Comparison Group Prior to Intervention

Measure Group N Mean (SD) t (df) p

Naglieri Nonverbal Ability Test Comparison 211 114.48 (12.65)  
 Experimental I 187 116.69 (14.36) 1.63 (396) .10
 Experimental II 182 115.91 (13.96) 1.07 (391) .29
SRBCSS Math Scale Comparison 181 27.14 (5.94)  
 Experimental I 168 26.39 (5.61) 1.21 (347) .23
 Experimental II 164 49.61 (6.71) 32.98 (343) < .0001

Note: SRBCSS = Scales for Rating the Behavioral Characteristics of Superior Students.
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groups on the NNAT. Whereas students in both the 
comparison group and Experimental Group I received 
comparable ratings from their teachers on the SRBCSS 
Math Scale, students in Experimental Group II 
received statistically significantly higher ratings than 
students in the comparison group. Through observa-
tion and discussion with teachers, the researchers 
learned that teachers became more aware of charac-
teristics of mathematically promising students and 
of problems, opportunities, and questions that allow 
students to demonstrate their talent potential as a 
result of the implementation of the project the previ-
ous year. In fact, many of the third-grade teachers 
commented to the researchers that after the first year 
of the project they further defined the characteristics 
of mathematically promising students for the second-
grade teachers and discussed which students would 
benefit from the program. Thus, taking this caveat 
into consideration together with the similar scores on 
the NNAT, it is reasonable to assume that both exper-
imental groups and the comparison group were com-
prised of like-ability students.

Intervention

Prior to the implementation of the Project M3 
units, teachers attended a 2-week professional devel-
opment summer institute during which they learned 
about the philosophy, teaching strategies, and content 
of the units. During the school year, they received 1 
day of training prior to the implementation of each 
unit. Each unit spanned approximately 6 weeks of 
instructional time, and teachers implemented three or 
four of the grade-level units for approximately one-
half of each school year. During the remainder of the 
school year, teachers compacted the regular curricu-
lum and taught objectives not addressed in the Project 
M3 units. In the second year of the project (2003), 
Experimental Group I began studying the units in 
Grade 3 and continued in Grades 4 and 5. In the third 
year of the project (2004), Experimental Group II 
began studying the units in Grade 3 and also continued 
through Grade 5.

During the implementation phase, Project M3 team 
members visited each of the experimental classrooms 
once a week. The purpose of these visits was twofold. 
First, these visits provided fidelity of implementation 
checks in each of the classrooms. The Project M3 
team could assess whether or not the material in the 
unit was being taught and whether or not it was being 
taught in the way it was intended to be. In addition, 
teachers were required to keep a written record of the 

number of days each lesson was taught and how they 
used the different unit components. While in the 
classroom, the project team also could formatively 
assess the impact of individual lessons on student 
participation and understanding. Second, the visits 
served as additional time to work with teachers on les-
son planning and gain their feedback on a weekly 
basis about the curriculum and instructional strategies 
in the program. If teachers were not following the 
prescribed teaching strategies or sequence, the team 
member could model the intended approach in the 
classroom and also find out where the difficulties 
were. This helped the authors revise the content, 
pedagogy, format, and mathematics background in 
the teacher guide.

Research Design

We examined whether there was a difference in 
mathematics achievement between mathematically 
promising students exposed to the intervention and a 
comparison group of students of similar abilities and 
backgrounds. Because the sample was a restricted one 
(limited only to mathematically promising students) 
and drawn from urban as well as suburban schools, 
randomized control trials were not practical. The 
potential for attrition, as well as possible scheduling 
changes over the 3-year period of the intervention, 
presented a threat to internal validity. However, meth-
odological rigor was built-in to the research design to 
ensure that the results were authentic. To do this, the 
research hypothesis was tested twice, an internal rep-
lication. This design decision addressed the issues 
raised in evaluating curricular effectiveness (Clements, 
2007; Collins et al., 2004; Confrey, 2006; Kelly, 
2004). It also addressed the concerns of the What 
Works Clearinghouse and the National Research 
Council that no single study should be used to make 
policy decisions (Confrey, 2006).

Data Collection and Analysis

As Confrey (2006) recommends, multiple mea-
sures of mathematics achievement were used to 
evaluate the effectiveness of a curricular intervention. 
The Concepts and Estimation Test of the Iowa Tests 
of Basic Skills (ITBS), a norm-referenced standard-
ized assessment, was selected to measure the differ-
ence between the experimental and comparison 
groups at the end of the third, fourth, and fifth grades. 
We chose this scale because it reflected the content 
addressed in Project M3 because it “focus[es] on 
numeration, properties of number systems, and  number 
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sequences; fundamental algebraic concepts; and basic 
measurement and geometric concepts . . . and probabil-
ity and statistics” (Hoover et al., 2003, p. 38). As such, 
it met the test of “curricular validity” identified by the 
National Research Council as critical (Confrey, 2006, 
p. 203). As corroborating assessments, there were 
open-response questions addressing major unit con-
cepts and derived from released items on the NAEP 
and TIMSS assessments. Students completed the 
open-response questions at the end of each grade. To 
eliminate the diffusion of the treatment to the com-
parison group, the comparison group students were 
tested prior to the grade-level Project M3 intervention 
so that rival hypotheses would be reduced.

Results

To investigate differences in mathematics achieve-
ment as measured on a traditional assessment (the 
ITBS Concepts and Estimation Test) and on an 
Open-Response Assessment across experimental 
and comparison groups, we conducted a series of 
2-level multilevel models using hierarchical linear 
modeling version 6.06 (Raudenbush, Bryk, Cheong, 
Congdon, & du Toit, 2004). The dependent vari-
ables of interest were scores on the Concepts and 
Estimation section of the ITBS and scores on the 
Open-Response Assessment for each grade level. 
For the Open-Response Assessment, we combined 
the total scores on all items that were administered 
to all three groups for each grade level without 
weighting any items. Table 5 contains descriptive 
statistics for the outcome measures used in this 
study.

Although data were collected at the student level, 
we were interested in testing classroom-level effects. 
Level 1 contained mathematics outcome scores for 
students; Level 2 contained classroom information, 
that is, particular experimental or control group and 
school. The independent variable of greatest interest, 
exposure to Project M3 curriculum, included three 
conditions—the Project M3 Experimental Group I, 
the Project M3 Experimental Group II, and the 
Comparison Group. Because we had three groups, we 
used two dummy codes—M3_ExpI (Experimental 
Group I was coded 1; the other groups were coded 0) 
and M3_ExpII (Experimental Group II was coded 1; 
the other groups were coded 0), and we entered these 
two variables at Level 2. For the other Level 2 vari-
able, school, we created nine dummy codes for the 10 
cohorts of students. Given the small Level 2 sample 
size, we used restricted maximum likelihood estima-
tion (Raudenbush & Bryk, 2002).

Normality of Level 1 residuals and the homogeneity 
of Level 1 variances are standard assumptions of hier-
archical linear modeling version 6.06 . We set the alpha 
level for the test of homogeneity of variance to .02 
because this assumption is powerful and extremely 
sensitive to nonnormality (Raudenbush & Bryk, 2002). 
Among the basic residual analyses we conducted were 
examination of the normality of the Level 1 residuals. 
All of the outcome scores exhibited slight departures 
from normality (with some skew or kurtosis values 
greater than |0.25|, although none greater than |1.00|), as 
did the Level 1 residuals for the ITBS concepts and 
estimation and the Open-Response Assessment in 
Grade 3. For all three grade levels, the ITBS concepts 
and estimation outcome scores exhibited heteroge-
neous Level 1 variances (p < .02), but the 

Table 5
Descriptive Statistics for Experimental and Control Groups

 Experimental Group I Experimental Group II Comparison Group

Grade and Variable M SD N M SD N M SD N

Third         
ITBS 200.63 23.88 185 203.52 16.45 172 194.42 20.35 211
Open-response  8.74 2.36 184 8.40 2.30 172 6.33 2.38 208

Fourth         
ITBS 226.24 20.70 178 224.66 19.69 156 214.06 20.95 180
Open-response 10.11 3.51 177 9.91 3.23 159 6.49 3.22 180

Fifth         
ITBS 241.62 22.18 163 246.42 21.50 142 233.18 22.96 147
Open-response 7.64 2.66 162 8.25 2.33 143 5.73 2.50 147

Note: ITBS = Iowa Tests of Basic Skills.
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 Open-Response Assessment outcome scores exhibited 
homogeneous Level 1 variances (Grade 3, χ2(29) = 
26.59, p = .157; Grade 4, χ2(29) = 46.52, p = .021; 
Grade 5, χ2(29) = 30.63, p = .383). The departures 
from normality for outcomes and some residuals 
seemed a plausible reason that, in some of the cases, we 
rejected the assumption of homogeneity of variances. 
According to Raudenbush and Bryk (2002), if we were 
to use full information maximum likelihood estimation 
techniques, which are required to model the heteroge-
neity of variances explicitly, we would have biased 
estimates of the variance components because we had a 
relatively small number of classes (Level 2 units). 
Therefore, we did not model the heterogeneity of vari-
ances in any outcome scores explicitly. Instead, we 
used the robust standard errors, which are considered 
more robust to violations of normality and homogene-
ity than are the conventional errors.

We began analyzing each of the six outcomes by 
estimating a baseline model with no predictors at 
either level so that we could estimate the intraclass 
correlation (ICC), a measure of the proportion of 
variance at the school level in relation to the total 
variance. For all three grade levels of the ITBS con-
cepts and estimation test, the ICC was about .30 
(Grade 3 = .309, Grade 4 = .318, Grade 5 = .293). 
This indicates that about 30% of the variance in ITBS 
concepts and estimation scores at each grade level lay 
between classes. The results of each baseline model 
for the ITBS concepts and estimation scores are in 
Table 6. The ICCs for the Open-Response Assessment 
at each grade level were somewhat more variable. 
For third grade, the ICC was .352; for fourth grade, it 
was .502; and for fifth grade, it was .364. This indi-
cates that between 35% and 50% of the variance in 
Open-Response Assessment scores at each grade 
level lay between classes. Table 7 has the results of 
each Open-Response Assessment baseline model.

Given that we were interested in the effects of the 
Project M3 intervention and did not include any Level 
1 covariates, we next estimated the full Level 2 mod-
els, which included school cohort (nine dummy 
codes) and Project M3 group (two dummy codes) at 
Level 2. Table 6 displays the results of the three full 
models for the ITBS concepts and estimation, and 
Table 7 displays the results of the three full models 
for the Open-Response Assessment. Because of the 
coding system, the intercept (γ00) represented the pre-
dicted outcome score for a student in that grade at 
School 1 (all school dummy codes = 0) in the com-
parison group (M3_ExpI = 0 and M3_ExpII = 0). The 
coefficient for the nine school cohorts (γ03 to γ011) 
represented the differential between comparison 

group scores for students at the other nine schools 
and School 1. The coefficient for M3_ExpI (γ01) rep-
resented the differential for a student who partici-
pated in Project M3 Experimental Group I at the 
same school, and the coefficient for M3_ExpII (γ02) 
represented the differential for a student who partici-
pated in Project M3 Experimental Group II at the 
same school. This information can be used to deter-
mine the predicted score for different students. For 
instance, the predicted ITBS concepts and estimation 
score for a student in Grade 3 (γ00 = 181.17) at 
School 3 (γ04 = 24.66) who was in Experimental 
Group II was 213.79 (181.17 + 24.66 + 7.96), whereas 
the predicted score for a third grader in the same 
school but in the Comparison Group was 205.83.

Of greatest interest to us were the main effects of 
M3_ExpI and of M3_ExpII. For all three grade levels, 
both Experimental Group I and Experimental Group II 
had statistically significantly (p < .01) higher scores on 
the ITBS concepts and estimation. As shown in Table 8, 
the Cohen d effect sizes on this test ranged from 0.29 to 
0.59, which are small to medium effect sizes (Cohen, 
1992). The results from the ITBS concepts and estima-
tion test, a standardized, multiple-choice assessment, 
were corroborated by those obtained on the Open-
Response Assessment that consisted of items from 
released TIMSS and NAEP assessments. Both 
Experimental Group I and Experimental Group II 
scored statistically significantly higher (p < .001) on the 
Open-Response Assessment at all three grade levels. 
The Cohen’s d effect sizes on this assessment, which 
also are displayed in Table 8, ranged from 0.69 to 0.97, 
which are medium to large effect sizes (Cohen, 1992). 
These results indicate that both of the Project M3 exper-
imental groups, on average, outperformed comparison 
students on both the ITBS concepts and estimation and 
the Open-Response Assessment in Grades 3, 4, and 5.

Discussion and Implications

The main purpose of this research was to measure 
the efficacy of curriculum units that were designed for 
mathematically promising students and based on 
comprehensive principles from the fields of mathe-
matics education and gifted and talented education. 
Results from the analyses of data show that in all 
three grades students in the experimental groups con-
sistently had statistically significant gains over simi-
larly identified students in the comparison group on 
standardized achievement tests (the ITBS Concepts 
and Estimation Test) and on open-response items from 
the TIMSS and NAEP assessments. These findings 
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are consistent with results of other studies conducted 
on reform-based curricula (see Clements, 2007; Senk 
& Thompson, 2003). Features of the study design that 
strengthen the results include a comparison group of 
like-ability students with similar demographics from 
the same schools as the experimental groups and who 
were tested prior to any grade-level intervention, use 
of multiple and varied assessments to measure math 
achievement, and replication of the implementation at 
each of the three grade levels with a second experi-
mental group. These results provide initial “proof of 
concept” (NCTM, 2007, p. 2) support for efficacy of 
the Project M3 curriculum units on the achievement of 
mathematically promising students. In doing so, they 
provide an estimate of effectiveness with on-site 
supervision during the implementation of the curricu-
lum that insured fidelity of treatment.

The small number of classrooms, the weekly pres-
ence of project staff, and other professional develop-
ment offerings limit generalizability. Nevertheless, the 
positive results of this study suggest directions for 
future research. Disaggregation by performance of 
student subgroups is important and currently is under-
way. Additionally, a study investigating the longitudi-
nal effects of exposure to the Project M3 units on 
students who participated across all three grade levels 
is in progress. Further research should be conducted to 
investigate how participation in this curriculum might 
impact students’ understanding of mathematics and 
selection of courses in middle school, high school, and 
beyond. Finally, although the context of this study as 
a curriculum development project called for a quasi-
experimental design, a large-scale summative study 
with random assignment of students and teachers and 
with less professional development is warranted.

In conclusion, there is a paucity of research-based 
curriculum that is designed for mathematically talented 
students. The results of this intervention suggest that 
curriculum units that are concept-based, that are 
accelerated and enriched, and that encourage students 
to behave similar to practicing mathematicians con-
tribute to students’ mathematical achievement.
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